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Abstract. The problem of ‘brake squeal’ in the automotive industry remains despite over 70 years of research:

the phenomenon is still surprisingly unpredictable and poorly understood. The literature has moved from

very simple lumped parameter models to ever more sophisticated finite element models, but testing theory

against measurements has been hindered by the difficulty in obtaining repeatable results. It would seem the

phenomenon is extremely sensitive to changes in parameters beyond an experimenter’s control.

This paper describes recent results from a project to identify and quantify the sources of uncertainty within

sliding contact systems and to determine the sensitivity of the friction-coupled system to uncertain parameters.

The theoretical approach taken is to use a linear analysis based on the uncoupled transfer functions of two

general subsystems to predict stability when they are coupled by a sliding point contact. The model is tested

using a pin-on-disc rig whose uncoupled transfer functions can be measured.

Using a stability criterion based on the roots of the characteristic equation of the system, the sensitivity

of model predictions to parameter variations is investigated numerically. It is shown that using a realistic

range of parameters the root locations change considerably and enough to change stability predictions. As the

complexity of the model is increased reliable results become harder to achieve as the characteristic equation

becomes more ill-conditioned. This is not simply a result of the high order of the system, but is thought to

be a result of particular mode combinations. Experimental work shows uncoupled transfer functions vary over

time and by enough to significantly affect squeal predictions. These results suggest reasons for the difficulty in

obtaining repeatable measurements and for the unreliability of squeal prediction theories developed so far. If

the reasons for the sensitivity of squeal can be understood it may be possible to design sliding contact systems

that are more robust.

Introduction

Friction-induced vibration is a phenomenon that arises over a diverse range of scales and contexts, and includes

the noise that sometimes occurs when a vehicle is braking (mostly referred to as ‘brake squeal’). Initial research

focussed on using the frictional properties of the contacting materials to predict the occurrence of squeal.

While it is clearly important to understand the tribology of the system it is equally important not to neglect

the surrounding system properties. Spurr [1] was the first to propose a mechanism for how the supporting

structure of a sliding contact system could play a part in the generation of ‘stick-slip’ oscillation, which led to

increasingly complex lumped parameter models. Linearising the system produces an eigenvalue problem for

the complex ‘natural frequencies’: a particular vibration mode is unstable if the imaginary part of the eigenvalue

is negative. The growth in amplitude will be limited in practice by some non-linearity not accounted for in the

model such as the onset of stick-slip motion. Squeal research has been summarised by North [2] up until 1976,

Ibrahim [3] more recently and Kinkaid [4] for the last decade. North [2] noted that estimating equivalent modal

masses and stiffnesses proved extremely difficult, but finite element and multibody dynamics analysis packages

have made it possible to model complete brake systems giving the potential to relate the models to real systems

more easily than with lumped parameter models — Kinkaid et al. [4] provide a useful review of developments

up until 2003. However, a recurring theme of research to date is the difficulty in obtaining repeatable results that

correlate with theoretical models — even the most sophisticated models have only suggested ‘fixes’ for squeal,

not general design principles and there is still no validated predictive model of friction-induced vibration. The
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closest that has been achieved so far is in the context of the behaviour of the bowed violin string (e.g. the review

by Woodhouse and Galluzzo [5]).

The present research is based on the formulation of Duffour [6]. His approach was to combine modal

analysis with linear stability theory to develop a method for predicting the stability of two systems coupled

by a single point sliding contact. Formulating the point contact problem in terms of the transfer functions of

each of the uncoupled subsystems solved (in part) the problem of relating parameters to a real system, since

transfer functions are measurable. The theory was tested on a pin-on-disc apparatus. The results showed

a reasonable correlation between squeal frequencies and predicted unstable modes, however they were not

completely conclusive.

The universal observation that repeatable results are difficult to obtain suggests that friction-coupled systems

are highly sensitive to parameter changes. It is the aim of this research to identify the cause of this sensitivity

and to determine whether a sliding contact system can be designed to be more robust. This paper describes

recent results from numerical sensitivity studies and from experimental work on the pin-on-disc rig carried out

to test this hypothesis.

Summary of Theoretical Framework

For a complete description of the theoretical framework and experimental test rig, see Duffour [6]. The system

to be analysed is sketched in Fig. 1. The ‘disc’ is driven at constant velocity, V0, and the ‘brake’ is pushed

against it with a dynamically varying normal force, N , composed of a steady equilibrium preload, N0, plus

a small fluctuating component, N ′, such that N = N0 + N ′. The normal and tangential displacements from

equilibrium of the disc are denoted u1 and v1 respectively, and u2 and v2 for the brake. The normal and

tangential displacements from equilibrium of the point of contact are denoted u3 and v3. The spring of stiffness

kn represents the linearised contact stiffness. Any damping that may result from the contact has initially been

ignored.
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Figure 1: Two linear subsystems coupled by a single point sliding contact, with definition

of variables.

The dynamics of the ‘disc’ and ‘brake’ can be described in terms of transfer functions:

[

u1

v1

]

=

[

G11(ω) G12(ω)
G21(ω) G22(ω)

] [

N ′

F ′

]

(1)

[

u2

v2

]

=

[

H11(ω) H12(ω)
H21(ω) H22(ω)

] [

N ′

F ′

]

, (2)

where Gij(ω) are the transfer functions representing the disc’s response and Hij(ω) represent the equivalent set

of responses for the brake. These transfer functions can be determined using standard vibration measurement

techniques.
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Assuming a constant coefficient of friction the characteristic equation of the sliding coupled system is given

by Eq. 3. This system will be unstable if and only if the function D(ω) has at least one zero with a negative

imaginary part, where

D = G11 + µG12 + H11 + µH12 + 1/kn. (3)

If a coefficient of friction that varies with sliding velocity is now included, the relationship between F and N
can be linearised such that F ≈ [µ0 + iωǫ(v1 + v2)]N. The factor iω converts the displacements v1 and v2

into velocities and ǫ is the linearised gradient of the µ − v curve. More generally, if ǫ is allowed to become

complex and frequency dependent then it could describe any linearised relationship between F and N . The

characteristic equation is now given by Eq. 4 (see Duffour [7]):

E = D − iωǫ
[

(G11 + H11)(G22 + H22) − (G12 + H12)
2
]

. (4)

Numerical work

Some numerical tests were carried out to explore the sensitivity of predictions to changes in the model pa-

rameters. Initially, the coefficient of friction was assumed to be constant. A Matlab function was written to

calculate the characteristic equation of the system and its roots given the coefficient of friction, µ, the velocity

dependence, ǫ, the contact stiffness, kn, the rotation of the pin relative to the disc, θ (to take into account mis-

alignments when bringing the pin and disc into contact) and the modal parameters from the measured transfer

functions: the natural frequencies, ωn, amplitudes, an, and damping factors, Qn. If the system has n modes

then the characteristic polynomial is of order 2n. When a varying coefficient of friction is included the order

rises to 4n.

Numerical studies have been made in which the system parameters were varied over a realistic range.

Fig. 2(a) shows a cloud plot for the case where 0.4 < µ < 0.6, ǫ = 0, −1o < θ < 1o, 0.9 × 106 < kn <
3.6× 106Nm−1, and the modal parameters of each pin mode were varied by 10% from their measured values.

Fig. 2(b) shows the root variation when 0 < ǫ < 0.01.

(a) ǫ = 0. (b) 0 < ǫ < 0.01

Figure 2: Cloud plot of roots as parameters vary. ‘O’ and ‘△’ represent the uncoupled

poles of the disc and pin respectively.

It is interesting to note that the roots change enormously — if the measurements are as uncertain as the range

covered here then it is no surprise that squeal predictions are very unreliable. The broad region in the middle

of Fig. 2(a) shows that the imaginary part of the zeros can move by up to 600% while the real part remains

relatively unchanged. The root near 4 kHz can be either stable or unstable and the predicted squeal frequency

if unstable varies by up to 25%. It is also interesting to observe the variation in density of root locations

— this implies a sensitivity that varies with changes in parameters. Adding a velocity dependent coefficient
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of friction increases the effect of uncertainties such that predictions made on the basis of a measurement are

highly unreliable.

To explore the parameter sensitivity further, a Matlab function was written to find the sensitivity as any two

parameters were varied. The algorithm samples the variable space, (v1, v2), by calculating the phase of the root

locations at three close intervals for each variable sample, and obtaining an approximation to the gradient at

each point according to Eq. 5:

|∇φ| ≈

√

∂φ

∂v1

2

+
∂φ

∂v2

2

, (5)

where

∂φ

∂v1

≈
(6 z2 − 6 z1)

δv1

,
∂φ

∂v2

≈
(6 z3 − 6 z1)

δv2

. (6)

Fig. 3(a) shows how the sensitivity of one root changes as the natural frequency of the first disc mode and third

pin mode are varied by ±50%. These modes were chosen as they were already fairly close together with natural

frequencies of fdisc1 = 1027 Hz and fpin3 = 916 Hz. A maximum occurs when fdisc1 ≈ fpin3 ≈ 1200 Hz.

The maximum at fpin3 = 1374 Hz also lies close to the line defining fdisc1 = fpin3. It would seem therefore

that sensitivity is increased when the natural frequencies of uncoupled modes are close together, which might

explain some of the observations in the literature that brake squeal is more likely in these situations — perhaps

it would be more accurate to say that it is less predictable. However this does not explain why the sensitivity

changes along the line for which the natural frequencies are close, nor what causes the other features.

(a) Root near 1 kHz and line defining fdisc1 = fpin3.
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(b) Root near 3500 Hz.

Figure 3: Variation of sensitivity of roots

One difficulty encountered was ‘noisy’ surfaces — see for example Fig. 3(b). It can be seen that the sensi-

tivity data is not giving as smooth results as in Fig. 3(a). It is still useful as overall trends are visible, but the

noise level becomes more dominant with increasing model complexity.

Including a coefficient of friction that varies linearly with velocity doubles the order of the characteristic

equation and the number of roots, so it is not surprising that it has a significant effect on predictions. Also,

the roots become extremely sensitive to perturbations of the polynomial coefficients. Even perturbations of

the order of finite double-precision arithmetic of Matlab resulted in very large changes in some root locations

(see Fig. 4(a)). When the root-finding code was used in the function to determine sensitivity as two parameters

varied, the results showed few trends as they were dominated by finite precision errors, but it is interesting to

note that only some of the roots are highly sensitive which again points towards parameter-dependent sensitivity.

A measure of the numerical sensitivity of the system can be found by rewriting the problem in terms of

eigenvalues — the roots of a polynomial are also the eigenvalues of its companion matrix, A. The sensitivity of
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each eigenvalue, si, is given by si = (yT
i xi)

−1, where xi and yi are the corresponding eigenvectors of A and AT

respectively. For more details see Wilkinson [8]. The dots of Fig. 4(b) show the mean condition number, smean,

as the number of modes included increases. It appears that the system becomes more ill-conditioned. However,

the crosses show smean when each test is scaled by the mean of the natural frequencies included. This makes

the problem much better conditioned and almost independent of the number of modes included.
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Figure 4: Numerical sensitivity.

In order to explore more systematically the cause of high sensitivity, a three mode case was considered:

D =
a1

ω2
1

+ 2iζ1ω1ω − ω2
+

a2

ω2
2

+ 2iζ2ω2ω − ω2
+

a3

ω2
3

+ 2iζ3ω3ω − ω2
(7)

Figure 5: Sensitivity of three mode system to

changes in a3 and ω3.

Fig. 5 shows the sensitivity of each root over the

range −1 < a3 < 1 and 0.8 < ω3 < 1.4 with

a1 = a2 = 1, ω1 = 1, ω2 = 1.2, ζ1 = ζ2 = 0.01,

ζ3 = 0.03 and considering only the simplest case where

kn → ∞ and ǫ = 0. With a3 ≈ −1 there are two max-

ima close to ω = 1 and ω = 1.2, consistent with the pre-

vious observation of increased sensitivity when modes

are close in natural frequency. As a3 → 0 these max-

ima begin to converge and increase in magnitude. When

a3 = 0 these become one, however, tracking the roots

becomes difficult as each pair of roots goes through a

single point on the complex plane, so the region where

0 ≤ a3 < 1 is not completely reliable. Also, when

a3 ≈ −1.5 (not shown) the roots bifurcate and track-

ing them through this change is difficult. These sudden

changes are extremely interesting and suggest that real

systems can change behaviour completely when changed by a small amount under certain circumstances. With

an improved tracking algorithm, these effects will be able to be analysed more effectively.
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Experimental work

The main aims of the experimental work were to quantify the uncertainties within the system to provide inputs

for the numerical studies, and to explore their significance. As seen, the model predicts that the behaviour of

the system is highly dependent upon the modal parameters of the uncoupled subsystems and the parameters

defining the contact model. These can only be found to a certain precision, and may vary with time. To test the

variability of the system dynamics, the transfer functions of the pin and the disc were measured multiple times

over several days under nominally identical conditions. The transfer functions were also measured before and

after readjusting the clamping bolts, and before and after realignment of the laser vibrometer and the impulse

hammer.
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Figure 6: Variation of one peak of H11(ω).

H11(ω) was measured five times within 20 minutes. The first two tests were direct repeats without changing

anything, the third was after realigning the laser and hammer, the fourth after loosening and tightening the

bolts holding the assembly to the table and the fifth on a more sensitive laser vibrometer setting (subsequently

compensated for) such that lighter impulses gave the same voltage output. Fig. 6(a) shows how the peak at 919
Hz varies for each of these measurements. Fitting the modal parameters showed that the variation of the peak

frequency is only around 0.05%, but the damping factor varies by 2% and the modal amplitude varies by 7%.

Various physical effects can account for these deviations. It is possible that realigning the hammer and the laser

very slightly varies the modal amplitudes of all of the peaks, so at this peak the residual components of the

other modes shifts the resonant frequency very slightly. Changes in the tightness of the bolts could also give

unpredictable variations in damping. Also the average impulse amplitude delivered by the hammer is slightly

different for each measurement, so any effect of spring hardening would vary each result. Further tests would

be required to identify the dominant effect. It is curious however, that even two tests repeated one after the

other without any changes made should give even slightly different results. While for most applications such

uncertainty is small enough to be neglected, it has been shown in the previous section that these small changes

can affect the stability of sliding contact systems.

Fig. 6(b) shows the variation of H11(ω) measured on three separate days. Now the variations are signifi-

cantly greater. While the peak frequency shifts by only 0.3%, the spread is almost as large as its bandwidth

and thus cannot be accounted for simply on the basis of misalignment. The damping and modal amplitudes

are changed by around 20%. The variability could perhaps be the result of changing ambient conditions such

as temperature or humidity, though no tests have been carried out here to confirm this. Similar variations were

observed for most of the peaks of all the measured transfer functions, though with slightly less variation of the

disc transfer functions. Presumably frictional and contact parameters could vary by a larger factor, but this has

not yet been explored quantitatively.
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Conclusions

Obtaining repeatable results for brake squeal tests is difficult. Experimental work reveals a significant degree of

uncertainty and variability of system parameters and numerical studies show that this strongly influences squeal

predictions. Initial tests to determine the causes of sensitivity suggest that the coupled system seems to be more

sensitive to parameter variation when two uncoupled modes are close in natural frequency. Including a velocity

dependent coefficient of friction significantly complicates the model and predictions can be dominated by finite

precision errors which are not just a result of the high order of the characteristic equation, but depend on the

distribution of the modes. Future work aims to explore these issues in more detail and to isolate the causes of

high numerical and parameter sensitivity.
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